Robot Learning: obtaining good results with a few experiments on the robots

Luca locchi

A. Cherubini, F. Giannone, P.F. Palamara, E. Menegatti, F. Dalla Libera DIS, University of Rome "La Sapienza", Italy University of Padua, Italy

> Dipartimento di Informatica e Sistemistica Antonio Ruberti

Robot Learning

- Many *robot tasks* require fine tuning of parameters in the implementation of behaviors, control actions, and strategic decisions.
- Both application of standard ML approaches and definition of new robot learning algorithm or methods
- Challenges in Robot Learning
 - Time and Hardware consumption
 - High noise, non-determinism
 - Real world real time requirements
 - Task complexity
 - Small amount of data (experiments) available

Robot Learning

Robot Learning proposes a change of focus

From "studying convergence properties of learning methods"... to "obtaining best results with a limited (small) number of experiments"

Robot Learning Tasks

- ...

- Object/situation recognition
- Navigation optimization
- Behavior/skill learning
- Localization and world modeling Genetic Algorithms
- Team behaviors (multi-robot)

- Robot Learning Methods
 - Decision Trees
 - Neural networks
 - SVM

 - Reinforcement Learning
 - ...

Robot Learning, L. locchi Workshop OpenRDK, Roma 17/3/2009

Robot Learning in RobCup 4LL

Year	# Teams	DT	NN/SVM	EC/RL	Other	# Pub
1998	3	-	-	-	2	2
1999	9	-	1	1	1	3
2000	12	1	1	1	2	5
2001	16	2	3	3	2	8
2002	19	2	-	3	4	9
2003	24	2	3	6	3	12
2004	24	2	1	11	5	19

Robot Learning is a winning approach!

Typical Robot Task Learning

 $S_1,...,S_m$: strategies for achieving a task \mathcal{T} $S_j = \{ B_1; B_2; ...; B_n \}$ (composition of behaviors) $B_i = \langle \Theta_1,..., \Theta_k \rangle$ (behavior parameters)

Example: soccer robot B_1, B_2 : ball approaching B_3, B_4 : ball controlling B_5, B_6, B_7 : kick actions

Robot Learning, L. locchi Workshop OpenRDK, Roma 17/3/2009

First case study: Robot Task Learning

Problem

- learning a complex task as a composition of different behaviors
- learning optimal parameters of the behaviors
- behavior learning and parameter learning at the same time

• Approach

- Extended Policy Gradient algorithm that consider *relevant* parameters and *contiguous* strategies

Advantages

- fast convergence with limited (small) number of experiments
- considering different sets of parameters for the same behavior when associated to different strategies

Policy Gradient for Concurrent Behavior and Parameter Learning

Trivial use of Policy Gradient

For each strategy v $X_v^* \leftarrow PG(X_v^0, n_{iter})$ $v^* \leftarrow \operatorname{argmax} F(X_v^*)$ return (S_v^*, X_{v^*})

An extended version of the Policy Gradient algorithm

Parameter relevance measure the relevance of parameters wrt to a strategy $R(S^{\nu}, j) \rightarrow 0 \ j$ not relevant for S^{ν} $\rightarrow 1$ very relevant <u>Strategy contiguity</u> relates solutions of two strategies $C(S^{\nu}, S^{w}) \rightarrow 0$ different solutions $\rightarrow 1$ similar solutions

Robot Learning, L. locchi Workshop OpenRDK, Roma 17/3/2009

Parameter Relevance: Examples

Fast convergence by reducing dimensions of the search space

1D Search

PG: 2D Search EPG: 1D Search

Implementation

 B_1, B_2 : ball approaching (11 parameters) B_3, B_4 : ball controlling (4 parameters) B_5, B_6, B_7 : kick actions (23 parameters)

- quality of walking gait

- quality of approaching ball

Objective function

linear combination of

- quality of kick
- Comparison with PG [Kohl and Stone 2004]

Robot Learning, L. locchi Workshop OpenRDK, Roma 17/3/2009

Second case study: Learning actions interleaving simulated and real data

Proposed approach

Robot Learning, L. locchi Workshop OpenRDK, Roma 17/3/2009

Implementation on real and simulated robots

Real robot

Simulated robot in USARSim

Walking and **Kicking** implemented with a fuzzy controller based on oscillation of torso and legs and arms swing [*Thanks to Univ. of Padova*]

Humanoid Walking

Problems

- Difficult task (20 DOF)
- Noise experiments
- Difficulty in operating the robot

Solution and Results

(next talk)

Robot Learning, L. locchi Workshop OpenRDK, Roma 17/3/2009

How to learn with OpenRDK

Typical learning process

- Try and evaluate process
- Execute many runs with different parameters and measure the peformance
- Exploiting a simulator

Advantages of using OpenRDK

- implement learning on top of existing modules
- learning parameters exported as repository properties
- Modularity w.r.t. learning methods and robot model (real or simulated)
- no need to recompile the modules!

How to learn with OpenRDK

Learning in an OpenRDK module

Robot Learning, L. locchi Workshop OpenRDK, Roma 17/3/2009

How to learn with OpenRDK

Learning in an external application

How to learn with OpenRDK

Controlling the learning process Learning θ **TCPSI System** θ modules θ 🛃 Nao Walk 127.0.0.1:9876 Conn - - - -Host 127.0.0.1 ??? 1 💌 0,145 📩 sideWavingInD 0,035 Connect 0,045 naxFootHeightSX vindWhenS. 0,005 0,005 - stepLength 0,12 xFootHeightDX Save params **RAgent** 0,3 📩 xComOffsetDS 0,25 cComOffset Walk 0,2 📩 sideStepLength onAmplitude 0,001 0,025 + hipWavingRswR hipWavingRswL 0,025 Stop 0,025 0,025 hipWavingLswL hipWavingLswR 0,1 × 0,005 × alder Amplitu 0,3 📩 kickSwingAmplitude 0,005 kickHeightAmplitud... kickHeightAmplitud Robot Learning, L. locchi Workshop OpenRDK, Roma 17/3/2009 17 How to learn with OpenRDK Modularity w.r.t. learning methods θ Learning **TCPSI System** θ modules θ Nao Walk 127.0.0.1:9876 Conn _ 🗆 🔀 arror Host 127.0.0.1 777 1 0,145 🖕 sideWavingInDoo 0,035 Connect 0,045 v maxFootHeightSX 0,005 v stepLength WavingWhenS... 0,005 0,12 maxFootHeightDX Save params **RAgent** 0,3 + xComOffsetDS 0,25 Offset Walk 0,2 v sideStepLength 0,025 v hipWavingRswR rotationAmplitude 0,001 0,025 ÷ hipWavingRswL

Stop

0,1

0,005

0,025 hipWavingLswL

0,3 kickSwingAmplitude

0,005 kickHeightAmplitud...

hipWavingLswR

ulderAmplitu

kickHeightAmplitur

How to learn with OpenRDK

Modularity w.r.t. (real and simulated) robot models

References

A. Cherubini, F. Giannone, L. Iocchi, M. Lombardo, and G. Oriolo.
Policy Gradient Learning for a Humanoid Soccer Robot.
In Robotics and Autonomous System - Special Issue on "Humanoid Soccer Robots". 2009.

A Cherubini, F. Giannone, L. locchi, and P. F. Palamara.

An extended policy gradient algorithm for robot task learning.

In Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2007.

A. Cherubini, F. Giannone, and L. locchi.

Layered Learning for a soccer legged robot helped with a 3D simulator. In RoboCup 2007: Robot Soccer World Cup XI. 2008. pp. 385-392.

L. locchi, F. Dalla Libera, and E. Menegatti. Learning Biped Locomotion using Interleaved Simulated and Real Data. In Proc. of 2nd Workshop on Humanoid Soccer Robots, 2007.